Author:
Alibeiki Esmaeil, ,Rajabi Javad,
Abstract
In this study, flow stress behavior of AISI 4340 steel in thermomechanical process was investigated under temperature and strain rate ranges of 1173 to 1373 K and 0.01 to 1 s-1, respectively. In flow curves, mechanisms such as work hardening (WH), dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred. It was also discovered that the flow stress decreases with the increase of deformation temperature and the decrease of strain rate. Flow stress curves declared that in low-strain rate and high temperature, dynamic recrystallization overcome work hardening. Also, decreasing temperature led to dynamic recovery and incomplete dynamic recrystallization. Work hardening rate-stress curves depicted that the presence of a turning point expresses dynamic recrystallization mechanism and sub-boundaries are formed at the beginning of where a turning point occurs. In partial dynamic recrystallization, the microstructure was consisted of long grains reshaped because of deformation and some recrystallized grains that nucleated around those reshaped long grains. The results also indicated that at temperature of 1373 K, stress value of σsf, for strain rate of 0.01 s-1 was increased from 27.8 MPa to 96.5 MPa and also for strain rate of 1 s-1 and stress of σc was increased from 32.3 MPa to 105 MPa. The significance of the approach used in this work was any increase in strain rate leads to accelerating dislocation movements. Therefore, dislocations will hit the barriers sooner and will be stopped and also, as a result of delayed dynamic recovery due to dislocations movements, dynamic recrystallization is also delayed.
Publisher
Penerbit Universiti Kebangsaan Malaysia (UKM Press)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献