Does apple canker develop independently on leaf scars of a single apple shoot?

Author:

Xu XiangmingORCID,Olivieri Leone,Gange Alan C.ORCID,Vorster LizelleORCID,Rice Don,Campbell Rebecca E.ORCID,Walter MonikaORCID

Abstract

European apple canker, caused by Neonectria ditissima, causes serious damage to apple trees, particularly young trees. Canker management is difficult because of the limited availability of effective fungicides, the long latency period, inoculum abundance and host resistance in commercial cultivars as well as the need for costly manual pruning interventions. To understand disease aggregation for more effective pruning management, we assessed whether canker infection and subsequent lesion development on leaf scars are independent from each other on the same shoot. Four inoculation experiments were conducted: one in glasshouse, and three in orchards. On each shoot, 10 consecutive leaf scars were inoculated and assessed for visible cankers over time in situ. Number of cankers developed per shoot as well as spatial distribution of these cankers within a shoot was statistically analysed. Most data of the number of visible canker lesions on a single shoot failed to fit binomial distributions (indicator for independence) and were fitted much better by beta binomial distributions. In a number of cases (4–20%), there appeared to be positive association between lesion development on neighbouring leaf scars. However, in one experiment where laboratory incubation and isolation of N. ditissima from inoculated but asymptomatic leaf scars (after eight months’ field incubation) were used the results suggested independence of canker development on a single shoot.  We conclude that apparent aggregation of canker lesions on individual shoots is likely to originate from host responses. Such aggregation of canker lesions on individual shoots should be taken into consideration for field disease assessment and management.

Publisher

New Zealand Plant Protection Society

Subject

Horticulture,Insect Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3