PERBANDINGAN MODEL KLASIFIKASI RANDOM FOREST DENGAN RESAMPLING DAN TANPA RESAMPLING PADA PASIEN PENDERITA GAGAL JANTUNG

Author:

Arisandi Rizwan1ORCID

Affiliation:

1. Departement of Computer Science, Faculty of Informatics Engineering, Bina Nusantara University, Indonesia

Abstract

Cardiovascular disease that causes heart failure is one of the diseases with the highest mortality rate in the world. Therefore, there is a need for an accurate model to classify heart failure based on clinical information and the lifestyle of patients with the disease, as an alternative solution in administering appropriate drugs. This study compared the classification model of living and deceased heart failure patients based on clinical information and patient lifestyle using the random forest method when using resampling techniques and not using resampling techniques. The results obtained from this study are that the Random Forest model with a combination of the SMOTE and Edited Nearest Neighbors methods is the best model for classifying someone with heart failure as alive or dead. The Random Forest model with a combination of the SMOTE and Edited Nearest Neighbors methods has a high level of classification accuracy in the evaluation model that focuses on recall, namely rf_model_smoteenn can classify 82.96% of patients with living status and 90% of patients with death status.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3