Textile Wastewater Treatment Using Polypyrrole/Polyphenol Oxidase Membranes

Author:

Murniati Anceu1ORCID,Fajriana Nadia Annisa1,Nugraha Gilang Adi1,Ibrahim Restu Muchammad1,Hardian Arie1ORCID,Buchari Buchari2,Gandasasmita Suryo2,Nurachman Zeily3ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, Indonesia

2. Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia

3. Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia

Abstract

Polypyrrole (PPy) is widely regarded as a useful electrode material because it has the advantages of low cost, high electrical conductivity, and thermal stability. This study aimed to synthesize PPy membranes using polyphenol oxidase (PPO) isolated from white oyster mushrooms as a biocatalyst for processing textile wastewater. The membranes were produced through the electropolymerization of pyrrole (Py) using the electrodeposition method. The raw materials comprised 0.05 M Py and crude PPO white oyster mushroom extract at 35% v/v in citrate buffer pH = 6.8. The electrolysis process was performed at 6.00 V and 1.063–1.142 A using 16.57-48.97% immobilized PPO in PPy, PPO activity of 1.640–4.160 U, and 0.35 mM phenol as a substrate. The results showed that the use of the membrane in textile wastewater with a discontinuous flow caused a decrease of pH by 14.86%, phenol by 6.80%, Chemical Oxygen Demand (COD) by 81.30%, Biological Oxygen Demand (BOD) by 78.25%, and Total Suspended Solids (TSS) by 20.65%. Meanwhile, using the sample with a continuous flow caused a decrease of pH by 23.97%, phenol by 26.09%, COD by 88.50%, BOD by 78.00%, and TSS by 65.70%. The physical performance of membrane application to textile wastewater with discontinuous (flow rate = 48.19–51.50 L/h, flux = 3191.6–3387.5 L.m-2.h-1, and permeability = 319.2–338.7 Lm-2.h-1.bar) and continuous flow (flow rate = 48.19 L/h, flux = 3191.6 Lm-2.h-1, and permeability = 319.2 Lm-2.h-1.bar) was also assessed in this study. The Scanning Electron Microscopy (SEM) image was used to assess the morphology of the membrane before and after its application.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3