Biosynthesis of Silver Nanoparticles from Kepundung Fruit Peel (Baccauera Racemose) and Their Application in Mercury Detection Using Digital Image Colorimetric Methods

Author:

Habibie Irhas Anugrahadi1ORCID,Ningsih Apriliya1,Kusuma Yogi Dian1,Wardani Riska Sukma1,Rismawati Dhity2,Murniati Murniati1ORCID

Affiliation:

1. Chemistry program, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram City, West Nusa Tenggara, Indonesia

2. Mathematic program, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram City, West Nusa Tenggara, Indonesia

Abstract

Mercury is a dangerous and toxic metal, thus necessitating an analytical method to ascertain its presence. Traditional methods for mercury analysis often involve costly instruments and specialized expertise. However, the Digital Image Colorimetry (DIC) method is an alternative for mercury detection due to its speed, simplicity, and cost-effectiveness. This research aims to synthesize silver nanoparticles (AgNPs) using Kepundung fruit peel (Baccaurea racemosa) extract as a mercury detector. Baccaurea racemosa has secondary metabolite compounds that can act as natural reducing agents (bioreductors) in synthesizing silver into nanoparticles. AgNPs were optimized and characterized using UV-Vis spectrophotometer, FTIR, PSA, and XRD instruments. Mercury detection was explained using RGB Detector and ImageJ. The research results revealed that the optimal conditions for synthesizing AgNPs involved a concentration of 1% extract and a pH of 7. The properties of the AgNPs included a maximum absorption at wavelengths of 400-450 nm, an average particle size of 122.7 nm, a face-centered cubic crystal structure, and characteristic functional groups at wavenumbers of 3453 cm-1, 1700-1600 cm-1, and 1445 cm-1. These spectral features suggested the presence of phytochemical compounds serving as bioreductants. Optimal results for mercury detection were achieved using Whatman paper no. 41 at pH 7. Mercury was detected successfully, whereas Pb2+, Na+, Mg2+, K+, Cu2+, Ca2+, Co2+, Zn2+, and Fe3+ ions were not detected. The validation test obtained a LoD of 0.099 ppm, a LoQ of 0.330 ppm, and a coefficient value (R2) of 0.997, indicating good measurement linearity. Further research can be developed to increase the sensitivity of mercury detection with lower concentrations and extend its application to environmental samples.

Funder

Indonesian Ministry of Education, Culture, Research, and Technology

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3