Synthesis of Bromo Eugenol Derivatives with Molecular Bromine

Author:

Putri Verucha Fauzia1,Sugita Purwantiningsih1ORCID,Arifin Budi1

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia

Abstract

The bromination of eugenol using molecular bromine (Br2) has been widely reported. However, the outcomes have been inconsistent, and as a result, the specific steps of the bromination process have not been definitively established. This research aims to synthesize various derivatives of bromo eugenol, incorporating bromine atoms either in the alkene group, the aromatic ring, or both. The synthetic approaches employed include: (1) direct bromination of eugenol using 1.2, 2.4, and 3.6 equivalents (equiv) of Br2 in chloroform, (2) bromination of eugenyl benzoate with 2.4 equiv of Br2 in chloroform, and (3) debromination of the 1,2-dibromide functionality in selected bromination products using an excess of zinc in ethanol. The bromination steps of eugenol were then proposed based on the composition of the products obtained. Alkene bromination of eugenol predominated with 1.2 equiv of Br2, followed by aromatic bromination with excess Br2 (2.4 and 3.6 equiv). Aromatic substitution primarily occurred at position 6 (ortho to the hydroxyl group) and subsequently at position 5 (para to the methoxy group). Based on these results, we propose that the bromination of eugenol with Br2 proceeds initially through electrophilic addition to the alkene group, followed by electrophilic substitution on the aromatic ring. Protection of the phenol as a benzoyl ester shifted the regioselectivity of the first aromatic bromination from position 6 to 5. Furthermore, the 1,2-dibromide group has been successfully removed by zinc, resulting in derivatives containing bromine atoms only at the aromatic ring. This is by far the first comprehensive report on the bromination of eugenol with Br2 and the first one reporting the bromination of alkene as the main route of bromination with a nearly equimolar amount of Br2.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3