Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption

Author:

Fahri Halimah1ORCID,Zulfikar Muhammad Ali1ORCID,Azis Muhammad Yudhistira1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences and Mathematics, Bandung Institute of Technology, Bandung, Indonesia

Abstract

Ibuprofen (IBP) is a pollutant that is widely found in aquatic environments due to pharmaceutical waste and the metabolic results of humans who consume the drug. These compounds can cause damage to aquatic ecosystems, genotoxicity, and aquatic toxicity and are harmful to human health. This study aims to selectively adsorb IBP using magnetic molecularly imprinted polymers (MMIPs) synthesized from ibuprofen (IBP) as a template molecule, methacrylic acid (MAA) as a functional monomer, and divinylbenzene (DVB) as a crosslinker with a mole ratio of 1:4:20 in acetonitrile porogen solvent using a bulk polymerization method. Fe3O4 nanoparticles and MMIPs were characterized using X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Scanning Electron Microscope (SEM). IBP adsorption reached optimum conditions at pH 3 with a contact time of 90 minutes and a mass of 25 mg of adsorbent. The adsorption performance of MMIPs for IBP was evaluated by adsorption isotherms and adsorption kinetics. Adsorption of IBP by MMIPs followed the Langmuir adsorption isotherm model with an adsorption capacity of 227.24 mg/g. Kinetic studies showed that the adsorption process followed a pseudo-second-order adsorption kinetic model. MMIPs can adsorb IBP selectively even in the presence of interfering compounds, are easily separated from the solution, and can be used repeatedly with good adsorption ability. Hence, it is efficient and promising for removing IBP from aqueous media.

Funder

Department of Chemistry of Institut Teknologi Bandung

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3