Optimization of Cadmium Removal Using Tetraethylene Glycol-Modified Silica-Based Adsorbent via Response Surface Methodology

Author:

Linda Roza1,Abdullah Abdullah1,Daud Afrianto2ORCID,Indriyani Lisa Aprilia3,Purwaningsih Henny3,Rafi Mohamad3ORCID,Lim Lee Wah4

Affiliation:

1. Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Riau, Riau Province, Indonesia

2. Department of English Education, Faculty of Teacher Training and Education, Universitas Riau, Riau Province, Indonesia

3. Department of Chemistry, Faculty of Mathematics and Science, IPB University, Bogor, Indonesia

4. Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

Abstract

In solid-phase extraction for preconcentration, silica (Si) is the most commonly used as an adsorbent. However, the selectivity and effectiveness of silica gel adsorption on metal ions are low, so it needs to be modified to improve the adsorption capability. The modification was done using reflux and oven heating in the modification silica with 3-glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylene glycol (TEG). A central composite design batch process determined the optimum conditions for cadmium adsorption. TEG-modified silica was successfully synthesized and characterized using FTIR spectroscopy, SEM, and elemental analyzers. Peaks of C-H and epoxy on FTIR spectra showed that Si- GPTMS was formed. The increase of %C and %H from the first to the second step indicated that Si-TEG was successfully synthesized. There was no significant difference in silica particle morphology on SEM before and after modification. The reflux method gave a higher yield compared to the heating method. The constant stirring by the magnetic bar and solvent cycle in the reflux method catalyzed the reaction. This study found that at pH 7, 30 mg of adsorbent weight at 35°C and 22 minutes of contact time were optimum Cd2+ adsorption conditions. As the weight of the adsorbent increases, the adsorption capacity decreases. Contact time and temperature have no significant effect on Cd adsorption by Si-TEG.

Funder

Directorate of Research and Community Services, Ministry of Research, Technology and Higher Education

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3