Synthesis and Characterization Membrane Nanofibers Cellulose Acetate-Zeolite for Metal Pb (II) Adsorption

Author:

Fulanjari Intan Dyah1,Suryandari Ervin Tri2,Kusuma Hamdan Hadi1ORCID

Affiliation:

1. Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Walisongo, Semarang, Indonesia

2. Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Walisongo, Semarang, Indonesia

Abstract

Heavy metal waste, such as lead (Pb), released into the environment negatively affects ecosystems and human health due to its toxic properties. Consequently, it is imperative to develop methods to remove Pb from the environment. One widely used method is adsorption. Synthesizing adsorbents via electrospinning offers several advantages: simplicity, the ability to produce nano-sized fibers, lightness, chemical stability, and reusability. This research aims to determine the optimum conditions for synthesizing cellulose acetate (CA) nanofibers modified with zeolite (CA-Zeolite) by electrospinning to characterize them and evaluate their adsorption capacity. The research results showed that the optimum conditions for the synthesis of cellulose acetate nanofibers were a solution concentration of 14% (w/v), a voltage of 10.5 kV, a flow rate of 0.02 mL/hour, and a tip-to-collector distance of 10 cm. The FTIR spectrum of CA-Zeolite revealed a new peak in the 400-610 cm-1 wavelength range, indicative of O-Si-O bonds, characteristic of zeolite functional groups, confirming the successful incorporation of zeolite into the CA nanofibers. From the SEM data, it can be seen that the addition of 6% (w/w) zeolite reduced the average membrane fiber diameter from 662.4 nm to 353.1 nm. EDX results show the presence of Si and Al elements in the CA-Zeolite nanofiber membrane. Incorporating zeolite into CA nanofibers decreased the contact angle from 125.49° to 111.66°, enhancing hydrophilicity. The modified CA nanofibers with 6% (w/v) zeolite demonstrated an adsorption capacity of 1.595 mg/g.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3