Sustainable Design of a Near-Zero-Emissions Building Assisted by a Smart Hybrid Renewable Microgrid

Author:

Esmaeili Shayan Mostafa1ORCID,Najafi Gholamhassan1,Ghobadian Barat1,Gorjian Shiva1,Mazlan Mohamed2

Affiliation:

1. Department of Mechanical and Biosystems Engineering, Tarbiat Modares University (TMU), Tehran, Iran, Islamic Republic of

2. Advanced Material Research Cluster, Faculty of Bioengineering and Technology, University of Malaysia Kelantan, Jeli, Kelantan, Malaysia

Abstract

Renewable energy regulations place a premium on both the use of renewable energy sources and energy efficiency improvements. One of the growing milestones in building construction is the invention of green cottages. Building Integrated Photovoltaic (BIPV) technologies have been proved to aid buildings that partially meet their energy demand as sustainable solar energy generating technologies throughout the previous decade. Curved facades provide a challenge for typical photovoltaics. This study designed, produced, and assessed elastic solar panels supported by flexible photovoltaic systems (FPVS) on a 1 m2 layer. The LabVIEW program recognizes and transmits online data on warm and dry climates. The fill factor was 88% and 84%, respectively, when installed on the silo and biogas surfaces. The annual energy output was 810 kWh on a flat surface, 960 kWh on a cylindrical surface, and 1000 kWh on a hemisphere surface. Economic analysis indicates that the NPV at Flat surface is $ 697.52, with an IRR of 34.81% and an 8.5-year capital return period. Cylindrical surfaces and hemispheres both get a $ 955.18 increase. For cylindrical and hemispheric buildings, the investment yield was 39.29% and 40.47%, respectively. A 20% increase in fixed investment boosted the IRR by 21.3% in the flat system. While the cylindrical system had a 25.59% raise, the hemisphere saw a 24.58% gain

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3