Technical, Economic, and Environmental Review of Waste to Energy Technologies from Municipal Solid Waste

Author:

Jamilatun Siti1ORCID,Pitoyo Joko1ORCID,Setyawan Martomo1ORCID

Affiliation:

1. Department of Chemical Engineering, Universitas Ahmad Dahlan Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia 55191, Indonesia

Abstract

Global municipal solid waste production and electricity demand gradually increased as a result of urbanization, population increase, and economic growth. The appropriate selection of Waste to energy (WTE) technologies needs consideration of energy efficiency, financial, and environmental aspects. This article discusses the technical, financial, and environmental side of existing WTE technologies. Waste-to-energy (WTE) technologies include thermal, physical, biochemical, and bio-electrochemical technology. Pyrolysis, gasification, and incineration are thermal technology used to generate energy from waste in the form of heat and syn-gas. Anaerobic digestion and landfill are biochemical technology to to generate energy from waste in the form of biogas. Physical technology is used to to generate energy from waste in the form of refuse-derived fuel (RDF). Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are the most recent WTE technology that produces electricity and hydrogen fuel. The results of the assessment of existing technology show that anaerobic digestion and landfill are low-cost WTE technology but have a low potential for energy generation. Plasma gasification is WTE technology with a high potential for energy generation, cold gas efficiency (CGE), carbon conversion efficiency (CCE), and H2/CO ratio, low CO2 emissions, and high operating costs. MEC has a high H2-potential for energy generation, low CO2 emissions, and the highest capital cost. Incineration is a common conversion technology with a low potential for energy generation, high CO2 emissions, and high capital costs. The selection of WTE technologies is influenced by technical, economic, and environmental factors. 

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3