Electron contamination for 6 MV photon beams from an Elekta linac: Monte Carlo simulation

Author:

Anam Choirul1ORCID,Soejoko Djarwani S2,Haryanto Freddy3,Yani Sitti4,Dougherty Geoff5

Affiliation:

1. Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University

2. Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia

3. Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology

4. Department of Physics, Faculty of Mathematics and Natural Sciences, Insitut Pertanian Bogor

5. Department of Applied Physics and Medical Imaging, California State University Channel Islands

Abstract

In external beam radiotherapy, the photons from a linear accelerator (linac) machine undergo multiple interactions, not only in the patient but also in the linac head and the air column between the linac head and the patient. Electrons are released from these interactions and contaminate the beams. The current study evaluates electron contamination for 6 MV photon beams from an Elekta linac using Monte Carlo simulation. The linac head was simulated by the BEAMnrc code and the absorbed dose in a phantom was calculated using the DOSXYZnrc code. The parameters of the initial electron beams on the target, such as mean energy and radial intensity distribution, were determined by matching the calculated dose distributions with the measured dose (at 10 x 10 cm2 field size and 90 cm source-skin distance). The central axis depth-dose curves of electron contamination were calculated for various field sizes from 5 x 5 cm2 to 40 x 40 cm2. We investigated the components that generated the electron contamination for a field size of 10 x 10 cm2. The optimal initial electron beam energy was 6.3 MeV with a full-width half maximum (FWHM) of the radial intensity distribution of 1.0 mm. These parameters were found to be in good agreement with the measured data. Electron contamination increased as the field size increased. At a depth of 1.0 mm and field sizes of 5 x 5, 10 x 10, 20 x 20, 30 x 30, and 40 x 40 cm2, the doses from electron contamination were 3.71, 5.19, 14.39, 18.97 and 20.89 %, respectively. Electron contamination decreased with increased depth. At a depth of 15 mm, the electron contamination was about 1 %. It was mainly generated in the air column between the linac head and the phantom (3.65 %), the mirror (0.99 %), and the flattening filter (0.59 %) (for the depth of 1.0 mm and the field size of 10 x 10 cm2).

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3