Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement

Author:

Sözen Adnan,Khanları Ataollah,Çiftçi Erdem

Abstract

Plate heat exchangers, a compact-type heat exchanger, are commonly used heat transfer devices because of their superior characteristics. Their thermal performances are strongly dependent to working fluid circulating inside the system. The influences of nanofluid utilization as the working fluid in a plate heat exchanger was experimentally and numerically analysed in this study. In order to show off the improvement rate in heat transfer, the experiments were performed by using deionized water and TiO2-deionized water nanofluid. The nanofluid was prepared at the rate of 1.5 % as weighted. A surface-active agent, Triton X-100, was also doped into the mixture at the rate of 0.2% of a final concentration to prevent the sedimentation and flocculation of the nanoparticles inside the solution. The experiments were performed in different temperatures as 40°C, 45°C, 50°C and varying cold fluid mass flow rates as 3,4, 5, 6 and 7 lpm.  In addition, using the experimental data, a numerical simulation was realized by ANSYS Fluent software.  The both results indicate that heat transfer rate in plate heat exchanger can be improved using nanofluid as the working fluid in place of deionized water. The maximum improvement rate in heat transfer was obtained as 11 % in experimental study. It is also seen that experimental and numerical results are in good agreement.©2019. CBIORE-IJRED. All rights reservedArticle History: Received May 18th 2018; Received in revised form October 17th 2018; Accepted January 8th 2019; Available onlineHow to Cite This Article: Sözen, A., Khanlari, A., and Çiftçi, E. (2019) Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement. Int. Journal of Renewable Energy Development, 8(1), 27-32.https://doi.org/10.14710/ijred.8.1.27-32

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3