Affiliation:
1. Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Daerah Istimewa Yogyakarta 55281, Indonesia
Abstract
The cathode materials fabrication with outstanding performance and stability at intermediate temperatures of 600–800℃ is required for the prospective mass production of solid oxide fuel cells (SOFCs). Infiltration is a potential method because it has proven successful in fabrication and cell performance enhancement. This study mainly focuses on the electrical conductivity and long-term reliability of cathode symmetric cells NdBa0.5Sr0.5Co2O5+δ (NBSC) fabricated by traditional solid-state reaction techniques. The electrical conductivity value of the cathode is in the range of 174–278 S.cm-1. Impedance analysis showed that the infiltration of 0.5M SDC on the NBSC cathode surface dramatically reduced the polarization resistance (Rp) between layers (cathode-electrolyte) from 3.32 Ω.cm2 to 1.82 Ω.cm2 at 600℃ or decreased by 45 % compared to NBSC cathode without 0.5M SDC infiltration. The enhanced stability of NBSC cathode specimens with 0.5M SDC infiltration (NBSC+0.5 M SDC) under SOFC operating conditions proves that samples with infiltration extend their lifetime. Compared to the NBSC cathode, the NBSC+0.5 M SDC cathode has better long-term stability with a lower RP value of 2.35 Ω.cm2. In the OPP range of 0.214-0.0027 atm at 800℃, the relatively tiny Rp value of the symmetrical cell is between 0.030 Ω.cm2 and 0.039 Ω.cm2, below the 0.15 Ω.cm2 suitable performance limit for solid oxide fuel cells.
Publisher
Institute of Research and Community Services Diponegoro University (LPPM UNDIP)