DYNAMIC SIMULATION AND COMPOSITION CONTROL IN A 10 L MIXING TANK

Author:

Hermawan Yulius Deddy,Haryono Gogot

Abstract

The open loop experiment of composition dynamic in a 10 L mixing tank has been successfully done inlaboratory. A 10 L tank was designed for mixing of water (as a stream-1) and salt solution (as astream-2 with salt concentration, c2 constant). An electric stirrer was employed to obtain uniformcomposition in tank. In order to keep the liquid volume constant, the system was designed overflow. Inthis work, 2 composition control configurations have been proposed; they are Alternative-1 andAlternative-2. For Alternative-1, the volumetric-rate of stream-1 was chosen as a manipulatedvariable, while the volumetric-rate of stream-2 was chosen as a manipulated variable for Alternative-2. The composition control parameters for both alternatives have been tuned experimentally. Thevolumetric-rate of manipulated variable was changed based on step function. The outlet stream’scomposition response (c3) to a change in the input volumetric-rate has been investigated. Thisexperiment gave Proportional Integral Derivative (PID) control parameters. The gain controllers Kc[cm6/(gr.sec)] for Alternative-1 and Alternative-2 are -34200 and 40459 respectively. Integral timeconstant ( tI) and Derivative time constant (tD) for both alternatives are the same, i.e. tI = 16 second,and tD = 4 second. Furthermore, closed loop dynamic simulation using computer programming wasalso done to evaluate the resulted tuning parameters. The developed mathematical model ofcomposition control system in a mixing tank was solved numerically. Such mathematical model wasrigorously examined in Scilab software environment. The results showed that closed loop responses inPID control were faster than those in P and PI controls.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3