On the Eddy Current Losses in Metallic Towers

Author:

Mahariq Ibrahim1ORCID,Beryozkina Svetlana2,Mohammed Huda3,Kurt Hamza4

Affiliation:

1. Department of electrical engineering, College of Engineering and Technology, American University of the Middle East,

2. College of Engineering and Technology, American University of the Middle East

3. Department of Electrical and Electronics Engineering, University of Turkish Aeronautical Association

4. Electrical & Electronics Engineering, Faculty of Engineering, TOBB University of Economics and Technology

Abstract

The existence of magnetic field around high-voltage overhead transmission lines or low-voltage distribution lines is a known fact and well-studied in the literature. However, the interaction of this magnetic field either with transmission or distribution towers has not been investigated. Noteworthy it is to remember that this field is time-varying with a frequency of 50 Hz or 60 Hz depending on the country. In this paper, we studied for the first time the eddy currents in towers which are made of metals. As the geometrical structures of towers are extremely complex to model, we provide a simple approach based on principles of electromagnetism in order to verify the existence of power loss in the form of eddy currents. The frequency-domain finite difference method is adapted in the current study for simulating the proposed model. The importance of such a study is the addition of a new type of power loss to the power network due to the fact that some towers are made of relatively conductive materials.©2020. CBIORE-IJRED. All rights reserved

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3