Techno-Economic Analysis for Bioethanol Plant with Multi Lignocellulosic Feedstocks

Author:

Srinophakun Penjit1,Thanapimmetha Anusith1,Srinophakun Thongchai Rohitatisha1,Parakulsuksatid Pramuk2,Sakdaronnarong Chularat3,Vilaipan Monsikan4,Saisriyoot Maythee1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900

2. Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900

3. Department of Chemical Engineering, Faculty of Engineering, Mahidol University Salaya, Nakorn Pathom 73170

4. Division of Sustainable and Resource Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900

Abstract

Oil palm empty fruit bunch and trunk are classified as primary lignocellulosic residues from the palm oil industry. They are considered to be promising feedstocks for bioconversion into value-added products such as bioethanol. However,using these lignocellulosic materials to produce bioethanol remains a significant challenge for small and medium enterprises. Hence, techno-economic and sensitivity analyses of bioethanol plant simultaneously treating these materials were performed in this study. The information based on preliminary experimental data in batch operations wasemployed to develop a simulation of an industrial-scale semi-continuous production process. Calculations of mass balance, equipment sizes, and production cost estimation of the production plant of various capacities ranging from 10,000 L/day to 35,000 L/day were summarized. The result based on 20 years of operation indicated that the net present value of theplant of lower capacities was negative. However,thisvalue became positive when the plant operated with a higher capacity, 35,000 L/day.The highest ethanol yield, 294.84 LEtOH/tonfeedstock, was produced when the planttreated only an empty fruit bunch generating 8.94% internal rate of return and US$0.54 production cost per unit.Moreover, the higher oil palm trunk ratio in the feedstock, the lower ethanol yield contributing to the higher production cost per unit.©2020. CBIORE-IJRED. All rights reserved

Funder

Thailand-China project, National Research Council of Thailand, the National Science and Technology Development Agency (NSTDA), Kasetsart University Research and Development Institute

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3