Thermal Performance Improvement of the Heat Pipe by Employing Dolomite/Ethylene Glycol Nanofluid

Author:

Aydin Duygu Yilmaz1,Gürü Metin1,Sözen Adnan2,Çiftçi Erdem2ORCID

Affiliation:

1. Chemical Engineering Department, Gazi University, Ankara

2. Energy Systems Engineering Department, Gazi University, Ankara

Abstract

In heat transfer applications, heat pipes are widely- preferred because of some characteristics such as low cost, being able to be produced in any size and low maintenance cost make them superior. Moreover, the working fluid to be employed substantially affects the heat transfer characteristics of a heat pipe. In this paper, effects of nanoparticle addition into the ethylene glycol on heat pipe’s thermal performance were analysed experimentally. Every test was done using two variant working fluids, ethylene glycol and dolomite nanoparticles-doped ethylene glycol, respectively. Dolomite nanoparticles (2% by weight) and Sodium Dodecyl Benzene Sulfonate (0.5% by weight) were doped into the ethylene glycol while preparing the dolomite/ethylene glycol nanofluid. After filling in the heat pipe, experiments were realized under changing working conditions. Using experimental data, efficiency and thermal resistance of the heat pipe were examined. Viscosity of the each working fluid was determined. The contact angle –wettability measurements were also performed to specify the effects of surface active agent addition. The obtained findings revealed that nanoparticle inclusion inside the base fluid, i.e. ethylene glycol, improved the thermal performance (efficiency) and decreased the heat pipe’s thermal resistance substantially. ©2020. CBIORE-IJRED. All rights reserved

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3