Design and Speed Control of SynRM using Cascade PID Controller with PSO Algorithm

Author:

Alkhafaji Mohammed Ayad1,Uzun Yunus2

Affiliation:

1. Department of Electrical Electronic Engineering, Thi-Qar University

2. Department of Electrical and Electronics Engineering, Aksaray University

Abstract

In recent years, the variable speed motor drive is supported over a fixed speed motor drive as per essentialness safeguarding, speed or position control and improvement of transient response characteristics. The aim of any speed controller is to take main signal that represent the reference speed and to drive the framework at that reference speed. This paper exhibits the design, simulation and control of synchronous reluctance motor (SynRM). In addition, the motor speed is controlled by utilizing a conventional PID controller that has been used from the cascaded structure. The Particle Swarm Optimization (PSO) was used to find the best parameters of the PID controller. Lead-Lag controller presents from the cascaded controller as the following period of control. The Space vector pulse width modulation (SVPWM) plot has been proposed to control the motor and make the motor work with no rotor confine contingent upon the info parameters that utilization in the simulation. An examination between both of PID tuned and PSO tuned controller affirms that the PSO gives dazzling control highlights to the motor speed and have an edge over the physically changing controller. Thus, this paper present investigation and simulation for the most precise procedures to control the speed reaction and torque reaction of synchronous reluctance motor (SynRM).©2020. CBIORE-IJRED. All rights reserved

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicle vibration test platform structure design and control strategy optimization;Advanced Control for Applications;2024-04-28

2. Modeling, Analysis and Simulation of a High-Efficiency Battery Control燬ystem;Computer Modeling in Engineering & Sciences;2023

3. Modeling of Synchronous Reluctance Motor and Open and Closed Loop Speed Control;2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH);2022-03-16

4. Design, Simulation and Analysis of the Propulsion and Control System for an Electric Vehicle;New Perspectives on Electric Vehicles [Working Title];2021-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3