Synthesis and Characterization of Fe-doped Hydroxyapatite/ZnO Nanocomposites Using the Coprecipitation Method from Processed Limestone

Author:

Hardian Arie1ORCID,Dewi Rosalinawati1,Jasmansyah Jasmansyah1,Syarif Dani Gustaman2,Murniati Anceu1ORCID

Affiliation:

1. Master of Chemistry Study Program, Faculty of Science and Informatics, Jenderal Achmad Yani University, Cimahi, Indonesia

2. Center for Applied Nuclear Science and Technology (PSTNT)-Nuclear Energy Research Organization (ORTN)-National Innovation Research Agency (BRIN), Bandung, Indonesia, Indonesia

Abstract

Hydroxyapatite (HAp) is the main inorganic component that forms teeth and bones. The abundant limestone reservoir in Indonesia can be utilized as a natural resource for the green synthesis of hydroxyapatite. The objective of synthesizing Fe-doped hydroxyapatite/ZnO nanocomposites is to enhance the magnetic properties of hydroxyapatite, facilitating its utilization as a biomaterial in drug delivery systems. This application proves valuable in regulating the timing and location of active substance decay in pharmaceuticals. The coprecipitation method was employed to synthesize Fe-doped hydroxyapatite (Fe-HAp) at varying concentrations of 0%, 2.5%, 5%, and 10% mol. Subsequently, Fe- HAp/ZnO nanocomposites were crafted with a weight ratio 4:1 through straightforward homogenization between nano Fe-HAp and nano ZnO, utilizing ethanol as a solvent. The analytical tools employed for characterization included X-ray fluorescence (XRF), X-ray diffraction (XRD), and Vibrating Sample Magnetometer (VSM). XRF analysis revealed that the Ca/P ratio in the Fe- HAp/ZnO nanocomposite decreased with increasing Fe dopant concentration, while the weight percentage of ZnO remained consistent across all nanocomposites. The XRD results demonstrated the presence of typical diffraction patterns of HAp and ZnO in the Fe-HAp/ZnO nanocomposite. However, secondary phases such as β-TCP, CaCO3, and Fe2O3 were observed in the Fe-HAp sample. The crystallite size of the Fe-HAp/ZnO nanocomposite generated in this study ranged from 29 to 38 nm. VSM characterization outcomes indicated that the substitution of Fe(III) can modify the diamagnetic properties of hydroxyapatite, rendering it ferromagnetic or superparamagnetic, depending on the dopant concentration employed.

Funder

Universitas Jenderal Achmad Yani

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3