Application of Compost and Manure in the Biopore Infiltration Hole to Improve Saturated Hydraulic Conductivity (Shc) of Soil in the Coffee Root Zone

Author:

Fitria Lailatul1ORCID,Wicaksono Kurniawan Sigit2,Soemarno Soemarno2

Affiliation:

1. Postgraduate Program in Soil and Water Management, Agriculture Faculty, Brawijaya University, Malang, Indonesia, Indonesia

2. Soil Department, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia

Abstract

Coffee is one of the primary sources of foreign exchange in Indonesia. The factors causing fluctuations in coffee production are climate change, high soil density, less organic material, which causes coffee roots to be unable to absorb water and nutrients optimally. The soil water movement measured by saturated hydraulic conductivity which represents the soil ability to transmit water. The application of compost and manure in the biopore infiltration hole (BIH) is an effective technology in reducing surface-runoff and organic wastes management, as well as soil characteristics improvement. This study was conducted using a Randomized Block Design with four treatments and four replications. The treatments were P1 as control (without BIH), P2 (BIH without compost), P3 (BIH+compost), and P4 (BIH+goat manure). Data analysis was carried out using the Ftest (ANOVA), and continued with Least Significant Difference (LSD) test at 5% level, when there was a significant difference. Observations of soil characteristics were carried out every two months in three depth of root zone, 0-20 cm, 20-40 cm, and 40-60 cm. While the observation of the Auger hole at a depth of 0-30 cm and 0-60 cm. Research variables include soil texture, soil bulk density, Saturated Hydraulic Conductivity of soil by Auger-Hole, Soil Organic Matter (SOC), pH, Cation Exchange Capasity (CEC), and coffee yield. Results showed that treatment of BIH+goat manure gave the best results, measured by improving soil hydraulic conductivity up to 40%. The highest coffee yield was found in the BIH+manure treatment to 3.29 t ha-1.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3