MODELING OF LOCAL POLYNOMIAL KERNEL NONPARAMETRIC REGRESSION FOR COVID DAILY CASES IN SEMARANG CITY, INDONESIA

Author:

Utami Tiani Wahyu1,Lahdji Aisyah2

Affiliation:

1. Program Study of Statistics, Universitas Muhammadiyah Semarang, Indonesia

2. Medical Faculty, University Muhammadiyah Semarang, Indonesia

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was recently discovered. Coronavirus disease is now a pandemic that occurs in many countries in the world, one of which is Indonesia. One of the cities in Indonesia that has found many COVID cases is Semarang city, located in Central Java. Data on cases of COVID patients in Semarang City which are measured daily do not form a certain distribution pattern. We can build a model with a flexible statistical approach without any assumptions that must be used, namely the nonparametric regression. The nonparametric regression in this research using Local Polynomial Kernel approach. Determination of the polynomial order and optimal bandwidth in Local Polynomial Kernel Regression modeling use the GCV (Generalized Cross Validation) method. The data used this research are data on the number of COVID patients daily cases in Semarang, Indonesia. Based on the results of the application of the COVID patient daily cases in Semarang City, the optimal bandwidth value is 0.86 and the polynomial order is 4 with the minimum GCV is 3179.568 so that the model estimation results the MSE is 2922.22 and the determination coefficient is 97%. The estimation results show the highest number of Corona in the Semarang City at the beginning of July 2020. After the corona case increased in July, while the corona case in August decreased.

Funder

LPPM Universitas Muhammadiyah Semarang

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3