Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids

Author:

Shirole Ashutosh1,Wagh Mahesh1,Kulkarni Vivek2

Affiliation:

1. Department of Technology, Shivaji University, District Kolhapur, Maharashtra, India

2. Sanjay Ghodawat Group of Institutions, Faculty of engineering, Atigre, District Kolhapur, Maharashtra, India

Abstract

The objective of this paper is to investigate the theoretical performance of Parabolic Trough Collector (PTC) using various nanofluids. The theoretical performances are calculated for Al2O3, graphite, magnetite, SWCNH, CuO, SiO2, MWCNT, TiO2, Fe2O3, and ZnO in water nanofluids. The heat transfer equations, thermodynamic properties of nanofluid and pumping power are utilised for the development of novel thermal model.  The theoretical thermal efficiency of the PTC is calculated, and the economic viability of the technology is predicted for a range of nanofluid concentration. The results showed that the thermal conductivity increases with the concentration of nanoparticles in the base fluid. Magnetite nanofluid showed the highest thermal efficiency, followed by CuO, MWCNT, ZnO, SWCNH, TiO2, Fe2O3, Al2O3, graphite, and SiO2, respectively. The study reveals that MWCNT at 0.4% concentration is the best-suited nanofluid considering thermal gain and pumping power. Most of the nanofluids achieved optimum efficiency at 0.4% concentration. The influence of mass flow rate on thermal efficiency is evaluated. When the mass flow rate increased from 70 Kg/hr to 90Kg/hr, a 10%-20% efficiency increase is observed. Dispersing nanofluids reduces the levelized cost of energy of large-scale power plants. These findings add to the knowledge of the scientific community aimed explicitly at solar thermal energy technology. The report can also be used as a base to pursue solar thermal projects on an economic basis.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3