Effect of natural dye combination and pH extraction on the performance of dye-sensitized photovoltaics solar cell

Author:

Estiningtyas Indri Wasa1,Kusumawati Nita1ORCID,Setiarso Pirim1ORCID,Muslim Supari2ORCID,Rahayu Nunik Tri1,Safitri Riska Nur1,Zakiyah Nafisatus1,Fachrirakarsie Fadlurachman Faizal1

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia

2. Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia

Abstract

Dyes are significant components in Dye Sensitized Solar Cell (DSSC) performance because they act as photosensitizers. Natural dye-based DSSC system fabrication innovations continue to be produced in an effort to improve DSSC performance efficiency. In this study, a DSSC system was developed using double components of natural dyes as natural photosensitizers to enhance DSSC efficiency. This method of making natural dye-based DSSC uses a combination of dye extracts from two different dye sources that have the potential as natural photosensitizers in DSSC. The research aims to investigate the impact of the combined use of two natural dyes and pH variations on DSSC performance. DSSC performance measurements encompass the short-circuit current (Isc), open-circuit voltage (Voc), and DSSC efficiency parameters. The obtained results indicate efficiency values for dyes (a) sappan wood/ethanol and turmeric/methanol; (b) turmeric/methanol and beetroot/ethanol; and (c) beetroot/ethanol and turmeric/distilled water. At neutral pH, the efficiency values are 2.09%, 2.10%, and 2.19%, respectively. Meanwhile, at acidic pH of 2.59%; 2.39%; and 2.71%. Notably, the dye efficiency values at acidic pH surpass those found at neutral pH conditions. The highest efficiency is observed in the combination of dye (c) beetroot/ethanol and turmeric/distilled water with efficiency reaching 2.71% at acidic pH.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3