Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

Author:

Chaiyalap Somchet1ORCID,Chai-ngam Ritthikrai1ORCID,Saengprajak Juthaporn2,Piamdee Jenjira1ORCID,Putkham Apipong3ORCID,Saengprajak Arnusorn4ORCID

Affiliation:

1. Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

2. Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

3. Faculty of Environment and Resource Studies, Mahasarakham University, 44150, Viet Nam

4. Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand

Abstract

The global demand for biochar in agricultural and carbon sequestration applications is increasing; nevertheless, biochar production using the 50-liter household biomass gasifier stove (50L-HBGS) in Thailand found major issues that need to be improved. The objective of this study was to study the effects of the airflow in the non-uniform combustion core shape (NCCS) on the biochar production characteristic of the 50L-HBGS. The new design of the NCCS was constructed and studied to replace the existing combustion core shape (ECCS) at Mahasarakham University. The height, air inlet, and air outlet diameters of the NCCS were designed at 45, 24, and 11.4 cm, respectively. The NCCS with 21 holes of the pyrolysis gas outlet, a diameter of 4 mm for each, was integrated into the 50L-HBGS and performed comparative tests to the ECCS using 9 kg of bamboo wood chunks in three consecutive experiments. The airflow and the combustion behavior were studied through the stove temperature profiles, which were recorded every 5 minutes using a digital data logger. The biochar products were studied using the scanning electron microscope (SEM) with the energy dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and the proximate analysis technique. The study indicated that the 50L-HBGS with the NCCS made significantly improved the airflow rates in the combustion core, resulting in better continuous burning during the ignition state than with the ECCS. Moreover, the pyrolysis temperatures were significantly improved, it was provided temperatures during the pyrolysis process reached higher than 500 oC, resulting in the liquid tar being removed and no unburned wood chunks remaining at the end. The characterization result demonstrated that the 50L-HBGS with the NCCS had created biochar within a range of micropore and macrospore sizes and high fixed carbon content, which could be advantageously used for different agricultural and carbon sequestration applications.

Funder

Mahasarakham University

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3