Offering strategy of a price-maker virtual power plant in the day-ahead market

Author:

Nguyen-Hong Nhung1ORCID,Bui Quang Khai1,Phan Vo Thanh Long1,Bui Huynh Duc1

Affiliation:

1. Department of Electrical Engineering, School of Electrical and Electronics Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

Abstract

With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance

Funder

The Ministry of Education and Training, Vietnam

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3