Optimization and management of flare gases through modification of knock-out drum HP flares by 4R approach based on 3E structures

Author:

Ahmadzadeh Ali1ORCID,Noorpoor Alireza1ORCID,Bidhendi Gholamreza Nabi1ORCID

Affiliation:

1. Faculty of Environment, School of Engineering, University of Tehran, Tehran, Iran, Islamic Republic of

Abstract

The goal of this study is the Optimization and Management of Flare Gases through the Modification of Knock-out Drum HP Flares. The optimization of the K.O.D. is to create a shell around it and inject water steam into the shell, so that a uniform temperature distribution has done inside the drum, so freezing does not occur, and liquid that drops inside the burner, does not burn. The result of the simulations showed that in the drainage part of the drum, humidity associated with inlet gas freezes upon entering it after pressure and temperature drop suddenly. In the drainage part of the drum and the entrance of water steam with a temperature of 438 K and relative pressure of 550,000 Pa, the freezing of the coating part of it is eliminated. Finally, the water steam with liquid water caused by the heat transfer between the steam, and the bottoms of the drum is out from its drainage part. In the following, two issues were examined; First, simulating the drum to prove the insufficient power of the electric heater at the entrance of the drum. Second, simulating the drum with its surrounding cover in order to eliminate possible freezing. As the result, this work simulated and optimized the K.O.D. flare system to reduce valuable and toxic gas which burned in the flare system and caused environmental, economic, and social effects. This modelling optimized 8 points to add optimum heat flux and used a water steam jacket to prevent the formation of a freezing zone. The optimum zone around the bottom of K.O.D. steam injected this zone and observed no ice formation occurred in this zone. The steam jacket creates uniform heating by using this design and steam injection to the outer wall of the drum. For many reasons, the implementation of this project will reduce smoke and flare pollution: Inhibition of freezing in the liquid outlet of the K.O.D., the liquid level inside the drum remains constant and prevents the transfer of liquid droplets associated with the exhaust gas to the flare.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3