Prediction of the output power of photovoltaic module using artificial neural networks model with optimizing the neurons number

Author:

Mohammad Abdulrahman Th.1ORCID,Hussen Hasanen M.2ORCID,Akeiber Hussein J.3ORCID

Affiliation:

1. Middle Technical University (MTU), Baqubah Technical Institute, Renewable Energy Department, Baghdad, 10074, Iraq

2. Ministry of Higher Education and Scientific Research, Department of Research and Development, Baghdad, 10074, Iraq

3. Ministry of Interior, Directorate of Arab and International Cooperation, Department of Educational Affairs, Baghdad, Iraq

Abstract

Artificial neural networks (ANNs) is an adaptive system that has the ability to predict the relationship between the input and output parameters without defining the physical and operation conditions. In this study, some queries about using ANN methodology are simply clarified especially about the neurons number and their relationship with input and output parameters. In addition, two ANN models are developed using MATLAB code to predict the power production of a polycrystalline PV module in the real weather conditions of Iraq. The ANN models are then used to optimize the neurons number in the hidden layers. The capability of ANN models has been tested under the impact of several weather and operational parameters. In this regard, six variables are used as input parameters including ambient temperature, solar irradiance and wind speed (the weather conditions), and module temperature, short circuit current and open circuit voltage (the characteristics of PV module). According to the performance analysis of ANN models, the optimal neurons number is 15 neurons in single hidden layer with minimum Root Mean Squared Error (RMSE) of 2.76% and 10 neurons in double hidden layers with RMSE of 1.97%.  Accordingly, it can be concluded that the double hidden layers introduce a higher accuracy than the single hidden layer. Moreover, the ANN model has proven its accuracy in predicting the current and voltage of PV module. 

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3