Short term solar irradiation forecasting using CEEMDAN decomposition based Bi-LSTM model optimized by Genetic algorithm approach

Author:

Gupta Anuj1ORCID

Affiliation:

1. Maharishi Markandeshwar Deemed to be University,Mullana, India

Abstract

Accurate short term solar irradiation forecasting is necessary for smart grid stability and to manage bilateral contract negotiations between suppliers and customers. Traditional machine learning methods are unable to acquire and rectify nonlinear characteristics from solar dataset, which not only complicates model construction but also affect prediction accuracy. To address these issues, a deep learning based architecture with predictive analysis strategy is developed in this manuscript. In the first stage, the original solar irradiation sequences are divided into many intrinsic mode functions to generate a prospective feature set using a sophisticated signal decomposition technique. After that, an iteration method is used to generate a prospective range of frequency related to deep learning model. This method is created by linked algorithm using the GA and deep learning network. The findings by the proposed model employing sequences obtained by the preprocessing methodology considerable improve prediction accuracy as comparison to conventional models. In contrast, when confronted with a high resolution dataset derived from big data set, the chosen dataset may not only conduct a huge data reduction, but also enhances forecasting accuracy up to 20.74 percent over a variety of evaluation metrics. As a result, the proposed method might be used to predict short-term solar irradiation with greater accuracy using a solar dataset.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3