Numerical simulation of a novel small water turbine generator for installation in a deep-flow hydroponics system

Author:

Lahamornchaiyakul Werayoot1ORCID

Affiliation:

1. Department of Mechanical Engineering, Rajamangala University of Technology Lanna Phitsanulok Campus, Phitsanulok 65000, Thailand

Abstract

Hydroponics systems are crucial for providing sustainable and cost-effective choices when soils are unavailable for conventional farming. The application of water flow rates within hydroponics systems to generate electricity is another idea that can be used in the field of power generation. This paper presents the determination of the mechanical power efficiency of a novel small water turbine generator for use in a deep-flow hydroponics system (DFT). The system was designed, analysed, and calculated for the most suitable geometries of the water pipeline inlet, DFT system, main structure of the PVC Tee Pipe Fitting, and a water turbine wheel using computational fluid dynamics software. The diameter of the water turbine wheel in this research was 48 mm. A DFT hydroponic system was modelled for the purposes of this research. We conducted a numerical simulation with water flow rates of 6, 8, and 10 l/min to evaluate the turbulent kinetic energy distribution in the DFT hydroponic system. The numerical simulation employed the control volume methodology, and the k-epsilon turbulence model was applied to obtain the computational conclusions. The highest torque and power that a novel small water turbine for installation in a DFT system could generate at a maximum flow rate of 0.000167 m3/s were 0.082 N.m. and 1.9568 watts, respectively. The forces generated by the fluid's speed and pressure can then be transferred to the building process of a novel small water turbine wheel. The FEA numerical result shows that the maximum value of the total deformation at a wheel speed of 228 rpm is 7.0 x 10-5 mm. The numerical simulations used in this study could potentially be used to further develop prototypes for innovative miniature water turbines that generate commercial electricity.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3