The Various Designs of Storage Solar Collectors: A Review

Author:

Ahmed Omer K1ORCID,Algburi Sameer2ORCID,Daouda Raid W.1ORCID,Shubat Hawazen N3,Aziz Enas F4

Affiliation:

1. Unit of Renewable Energy, Northern Technical University, Iraq

2. College of Technical Engineer, Al-Kitab University, Iraq

3. Al-Hawija Agriculture Office, Ministry of Agriculture, Iraq

4. Computer System Techniques, Technical institute-Kirkuk, Northern Technical University, Iraq

Abstract

The use of solar energy to heat water is the more critical application of solar energy. Researchers are trying to develop different methods to improve the efficiency of solar water heaters to meet the increasing demand for hot water due to global population growth. To reduce the cost and increase the efficiency of solar heaters, the solar collector and the storage tank are combined into one part, and this system is called solar storage collector. It can be defined as geometric shapes filled with water, painted black, and placed under the influence of sunlight to gain the largest amount of solar energy. This article presents the various designs of solar storage collector. This review showed that design variables and design shape significantly affect the efficiency of the solar heating system. Climate and operational factors also have a strong influence on the performance of solar heating. Furthermore, scientists and researchers have also used nanotechnology, solar cells, and mirrors to improve other stored solar collectors' performance. Finally, recently published articles indicate an increase in interest in improving the efficiency of solar storage collector by creating new designs that enhance the economic and practical viability.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3