Evaluating the EEMD-LSTM model for short-term forecasting of industrial power load: A case study in Vietnam

Author:

Nhat Nam Nguyen Vuu1,Huu Duc Nguyen2ORCID,Hoai Thu Nguyen Thi1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Viet Nam

2. Faculty of Energy Technology Electric Power University, Viet Nam

Abstract

This paper presents the effectiveness of the ensemble empirical mode decomposition-long short-term memory (EEMD-LSTM) model for short term load prediction. The prediction performance of the proposed model is compared to that of three other models (LR, ANN, LSTM). The contribution of this research lay in developing a novel approach that combined the EEMD-LSTM model to enhance the capability of industrial load forecasting. This was a field where there had been limited proposals for improvement, as these hybrid models had primarily been developed for other industries such as solar power, wind power, CO2 emissions, and had not been widely applied in industrial load forecasting before. First, the raw data was preprocessed using the IQR method, serving as the input for all four models. Second, the processed data was then used to train the four models. The performance of each model was evaluated using regression-based metrics such as mean absolute error (MAE) and mean squared error (MSE) to assess their respective output. The effectiveness of the EEMD-LSTM model was evaluated using Seojin industrial load data in Vietnam, and the results showed that it outperformed other models in terms of RMSE, n-RMSE, and MAPE errors for both 1-step and 24-step forecasting. This highlighted the model's capability to capture intricate and nonlinear patterns in electricity load data. The study underscored the significance of selecting a suitable model for electricity load forecasting and concluded that the EEMD-LSTM model was a dependable and precise approach for predicting future electricity assets. The model's robust performance and accurate forecasts showcased its potential in assisting decision-making processes in the energy sector.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3