Synthesis and Characterization of Physically Mixed V2O5.CaO as Bifunctional Catalyst for Methyl Ester Production from Waste Cooking Oil

Author:

Mulyatun Mulyatun12ORCID,Istadi Istadi1ORCID,Widayat Widayat1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Central Java, 50275, Indonesia

2. Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Walisongo, Semarang, Central Java, 50185, Indonesia

Abstract

Synthesis of the solid bifunctional vanadium-calcium mixed oxides catalyst was accomplished by application of a simple physical mixing approach. In this work, we compared the catalytic activity of CaO and 2%V2O5.CaO catalyst. Various characterization methods, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), BET surface area, and temperature-programmed desorption (TPD) of CO2 and NH3, were involved in studying the newly synthesized catalysts. The presence of CaO, CaCO3, and Ca(OH)2 compounds in the synthesized catalyst were detected by XRD and FTIR analysis. The existence of 2% V2O5 on the CaO catalyst surface was demonstrated by XRF analysis. From TPD-NH3, TPD-CO2, and BET surface area analysis, it was known that the 2% V2O5-CaO catalyst had a higher total number of acid-base sites and surface area than the CaO catalyst. In the fatty acid methyl esters (FAME) production from waste cooking oil (WCO) with higher free fatty acid (FFA), CaO could only catalyze the transesterification reaction. In contrast, 2%V2O5-CaO could successfully catalyze both the esterification of FFA and the transesterification of triglyceride (TG) simultaneously in a one-step reaction process. Thus, these results prove that 2%V2O5.CaO can act as a bifunctional catalyst in the production of biodiesel from WCO. Moreover, the synthesized 2%V2O5.CaO catalyst could achieve a maximum FAME yield of 51.30% under mild reaction conditions, including a 20:1 methanol to oil molar ratio, 60 °C reaction temperature, 1 wt% of catalyst loading, and 3 hours of reaction time.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3