Design and Performance Evaluation of a Multi-Temperature Flat Plate Solar Collector

Author:

Zwalnan Selfa Johnson1,Duvuna Gideon Ayuba2,Abakr Yousif Abdalla1,Banda Tiyamike1

Affiliation:

1. Department of Mechanical Material and Manufacturing Engineering, University of Nottingham

2. Department of Mechanical Engineering, Federal Polytechnic Mubi, Adamawa State

Abstract

The standard flat-plate solar collector utilises a single copper tube to remove the absorber plate’s heat. This type of collector’s primary purpose is to provide hot water for a single application. Hot water can be required for different applications at different temperatures. Besides, using the standard collector’s configuration may increase thermal demand and increase the collector’s size. Therefore, this study proposes a novel solar water heating configuration that uses three in-line fluid passages. The goal is to design a single collector that provides hot water for various uses: Sterilisation, washing, and postnatal care. Thus, the proposed system was modelled, and a numerical simulation conducted. This analysis compares the proposed system’s output and the standard collector’s output. The results showed that the thermal load demand was reduced by 27% when the hot water demand for these services was generated using three separate tanks. The serpentine collector’s efficiency with three fluid passages is increased by 20% compared to the traditional serpentine collector. The thermal energy delivered to meet load was 30% higher than that of the traditional serpentine system. The experimental and simulated system performance is in near agreement with an average percentage error Cv(RMSE) of 8.75% and confidence level NSE of about 87%. Since the proposed serpentine collector has a higher overall thermal production, it is recommended for use with hot water, which has to be heated to different temperatures.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3