Kinetic and thermodynamic study of composite with jute fiber as reinforcement

Author:

Assanvo Edja Florentin1ORCID,Toure Kicoun Jean-Yves N’Zi123ORCID,N’Gatta Kanga Marius1,Boa David1ORCID

Affiliation:

1. Laboratoire de Thermodynamique et Physico-Chimie des Matériaux, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire

2. Department of Physics, Kenyatta University P.O.BOX 43844-00100, Nairobi, Kenya

3. Department of Physics, Worcester Polytechnic Institute 100 Institute Road, Worcester MA, 01609-2280, United States

Abstract

In the present work, engineered by compression molding process via a hydraulic press, the A and B composite samples were carried out with 5% and 10% ratio respectively of Ricinodendron heudelotii oil-based alkyd resin in bio-based matrix made of unsaturated polyester using jute fibers as reinforcement material. The samples’ thermal decomposition was performed through thermogravimetry (TG) and derivative thermogravimetry (DTG) analyses. Both composite samples exhibit two stages of decomposition, where the main occurs at 200 - 550°C. Aiming to study and being able to model the thermal degradation of the elaborated composites, finding the kinetic triplets appears the best option to describe the kinetic process undergo by the composites in order to evaluate the performance application of the composites. Two non-isothermal techniques, Flynn-Wall-Ozawa (FWO) and Kissinger have been used to assess the activation energy Ea, and it is found that the apparent activation energy varies with the degree of conversion indicating that both composites decompose with a multiple step mechanism process. The appropriate reaction model for the second stage of decomposition was best suited with Johnson-Mel-Avrami (n<1) model and has been established, allowing us to model thermal degradation behavior of our elaborated composite material and set predictions. The estimated Arrhenius factor values were respectively about A and B composites, 4.12.1015 min-1 and 10.42.1015 min-1, allowing us to set the final equation characterizing the degradation process for the second and main decomposition stage. Finally, as a result of comparison between A and B composites, A appears to be the more thermally stable due to its lower values of Arrhenius pre-exponential factor over the main stage of decomposition and higher calculated the activation energy values.

Funder

CSIR-India and TWAS-Italy for award of the CSIR-TWAS fellowship for postgraduate studies at CSIR-NEIST, Jorhat

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3