Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment

Author:

Rahman Herliati1ORCID,Nehemia Ayu1ORCID,Astuti Hadiatun Puji1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Industrial Technology, University of Jayabaya, Indonesia

Abstract

The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.

Funder

Universitas Jayabaya

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3