Three combination value of extraction features on GLCM for detecting pothole and asphalt road

Author:

Arbawa Yoke Kusuma1,Utaminingrum Fitri1ORCID,Setiawan Eko1ORCID

Affiliation:

1. Faculty of Computer Science, Brawijaya University

Abstract

The rate of vehicle accidents in various regions is still high accidents caused by many factors, such as driver negligence, vehicle damage, and road damage. However, transportation technology developed very rapidly, for example, a smart car. The smart car is land transportation that does not use humans as drivers but uses machines automatically. However, vehicle accidents are still possible because automatic machines do not have the intelligence like humans to see all the vehicle's obstacles. Obstacles can take many forms, one of them is road potholes. We propose a method for detecting road potholes using the Gray-Level Cooccurrence Matrix with three features and using the Support Vector Machine as a classification method. We analyze the combination of GLCM Contrast, Correlation, and Dissimilarity features. The results showed that the combination of Contrast and Dissimilarity features had the best accuracy of 92.033 %, with a computing time of 0.0704 seconds per frame.

Funder

Brawijaya University

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Pothole and Geolocation Identification System using YOLOV8 and IoT Support for Road Maintenance;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. A new proposed GLCM texture feature: modified Rényi Deng entropy;The Journal of Supercomputing;2023-09-26

3. Pothole Detection Using Deep Learning: A Real-Time and AI-on-the-Edge Perspective;Advances in Civil Engineering;2022-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3