Affiliation:
1. Universitas Bumigora
2. Sekolah Tinggi Manajemen Informatika dan Komputer Lombok
Abstract
The occurrence of imbalanced class in a dataset causes the classification results to tend to the class with the largest amount of data (majority class). A sampling method is needed to balance the minority class (positive class) so that the class distribution becomes balanced and leading to better classification results. This study was conducted to overcome imbalanced class problems on the Indian Pima diabetes illness dataset using k-means-SMOTE. The dataset has 268 instances of the positive class (minority class) and 500 instances of the negative class (majority class). The classification was done by comparing C4.5, SVM, and naïve Bayes while implementing k-means-SMOTE in data sampling. Using k-means-SMOTE, the SVM classification method has the highest accuracy and sensitivity of 82 % and 77 % respectively, while the naive Bayes method produces the highest specificity of 89 %.
Publisher
Institute of Research and Community Services Diponegoro University (LPPM UNDIP)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献