Comparison of distance measurement on k-nearest neighbour in textual data classification

Author:

Wahyono Wahyono1,Trisna I Nyoman Prayana2,Sariwening Sarah Lintang2,Fajar Muhammad2,Wijayanto Danur2

Affiliation:

1. Department of Computer Science and Electronic, Universitas Gadjah Mada

2. Master of Computer Science, Universitas Gadjah Mada

Abstract

One algorithm to classify textual data in automatic organizing of documents application is KNN, by changing word representations into vectors. The distance calculation in the KNN algorithm becomes essential in measuring the closeness between data elements. This study compares four distance calculations commonly used in KNN, namely Euclidean, Chebyshev, Manhattan, and Minkowski. The dataset used data from Youtube Eminem’s comments which contain 448 data. This study showed that Euclidian or Minkowski on the KNN algorithm achieved the best result compared to Chebycev and Manhattan. The best results on KNN are obtained when the K value is 3.

Funder

Universitas Gadjah Mada, Indonesia

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Klasifikasi Pengeluaran per Kapita di Tiga Provinsi Sulawesi menggunakan K-Nearest Neighbor;J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika;2023-07-31

2. Reusability Analysis of K-Nearest Neighbors Variants for Classification Models;Studies in Big Data;2023

3. Pneumonia identification based on lung texture analysis using modified k-nearest neighbour;Journal of Physics: Conference Series;2022-02-01

4. Identification and Classification of Pathogenic Bacteria Using the K-Nearest Neighbor Method;JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA);2021-04-01

5. Discrimination of civet coffee using visible spectroscopy;Jurnal Teknologi dan Sistem Komputer;2020-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3