Enhanced image security using residue number system and new Arnold transform

Author:

Babatunde Akinbowale Nathaniel1,Oke Afeez Adeshina2ORCID,Oloyede Abdulkareem Ayopo3,Bello Aisha Oiza1

Affiliation:

1. Department of Computer Science, Faculty of Communication and Information Technology, Kwara State University, Malete, Kwara State, Nigeria

2. Department of Computer Science, College of Natural and Applied Sciences, Summit University, Offa, Kwara State, Nigeria

3. Department of Telecommunication Science, Faculty of Communication and Information Sciences, University of Ilorin, Kwara State, Nigeria

Abstract

This paper aims to improve the image scrambling and encryption effect in traditional two-dimensional discrete Arnold transform by introducing a new Residue number system (RNS) with three moduli and the New Arnold Transform. The study focuses on improving the classical discrete Arnold transform with quasi-affine properties, applying image scrambling and encryption research. The design of the method is explicit to three moduli set {2n, 2n+1+1, 2n+1-1}. These moduli set includes equalized and shapely moduli leading to the effective execution of the residue to binary converter. The study employs an arithmetic residue to the binary converter and an improved Arnold transformation algorithm. The encryption process uses MATLAB to accept a digital image input and subsequently convert the image into an RNS representation. The images are connected as a group. The resulting encrypted image uses the Arnold transformation algorithm. The encrypted image is used as input at decryption using the anti-Arnold (Reverse Arnold) transformation algorithm to convert the picture to the original RNS (original pixel value). Then the RNS was used to retransform the original RNS to its binary form. Security analysis tests, like histogram analysis, keyspace, key sensitivity, and correlation coefficient analysis, were administered on the encrypted image. Results show that the hybrid system can use the improved Arnold transform algorithm with better security and no constraint on image width and size.

Funder

College of Natural and Applied Science, Summit University

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3