AKSALont: Automatic transliteration application for Balinese palm leaf manuscripts with LSTM Model

Author:

Kesiman Made Windu Antara1ORCID,Dermawan Kadek Teguh1ORCID

Affiliation:

1. Virtual, Vision, Image, and Pattern Research Group, Department of Informatics Engineering, Faculty of Engineering and Vocational, Universitas Pendidikan Ganesha. Jl. Udayana No. 11, Singaraja, Bali 81116, Indonesia

Abstract

This study aims to develop an automatic transliteration application for the Balinese palm leaf manuscripts into the Latin/Roman alphabet. The input for this system is the digital image of the original text from the ancient Balinese palm leaf manuscripts, not from the Balinese script, which is printed using a font on a computer. In this study, a segmentation-free transliteration machine using the LSTM model was implemented. In addition, the implementation of the AKSALont application is carried out for the interactions on a web-based platform using cross-platform interoperability. The experimental results show that the machine can transliterate Balinese characters on the Balinese palm-leaf manuscript images properly with a CER of 19.78 % using 10.475 test data. With a web-based online platform, AKSALont has been able to open wider access for the public to the web-based content with an online platform collection.

Funder

DRPM DIKTI melalui Skema Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) Tahun 2020

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network;Wireless Communications and Mobile Computing;2022-05-29

2. Human motion recognition information processing system based on LSTM Recurrent Neural Network Algorithm;Journal of Ambient Intelligence and Humanized Computing;2022-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3