Parameter tuning in KNN for software defect prediction: an empirical analysis

Author:

Mabayoje Modinat Abolore1,Balogun Abdullateef Olwagbemiga1ORCID,Jibril Hajarah Afor1,Atoyebi Jelili Olaniyi2,Mojeed Hammed Adeleye1,Adeyemo Victor Elijah1

Affiliation:

1. Department of Computer Science, University of Ilorin

2. Department of Computer Science and Engineering, Obafemi Awolowo University

Abstract

Software Defect Prediction (SDP) provides insights that can help software teams to allocate their limited resources in developing software systems. It predicts likely defective modules and helps avoid pitfalls that are associated with such modules. However, these insights may be inaccurate and unreliable if parameters of SDP models are not taken into consideration. In this study, the effect of parameter tuning on the k nearest neighbor (k-NN) in SDP was investigated. More specifically, the impact of varying and selecting optimal k value, the influence of distance weighting and the impact of distance functions on k-NN. An experiment was designed to investigate this problem in SDP over 6 software defect datasets. The experimental results revealed that k value should be greater than 1 (default) as the average RMSE values of k-NN when k>1(0.2727) is less than when k=1(default) (0.3296). In addition, the predictive performance of k-NN with distance weighing improved by 8.82% and 1.7% based on AUC and accuracy respectively. In terms of the distance function, kNN models based on Dilca distance function performed better than the Euclidean distance function (default distance function). Hence, we conclude that parameter tuning has a positive effect on the predictive performance of k-NN in SDP.

Funder

University of Ilorin

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3