Affiliation:
1. Faculty informatics school of computing, Telkom University, Indonesia
Abstract
In this modern era, people certainly very easy to access social media, one of which is Twitter. Twitter is usually used by the public in expressing opinions regarding current issues, product reviews, and many other things positive, negative, or neutral opinions, or can be interpreted as sentiment. This study aims to analyze the aspect-based sentiment of Telkomsel users on Twitter using random forest classification and the extension of the Glove feature. This study uses signal aspects and service aspects with a total dataset of 16988 data. A Random forest can be classified as relevant and accurate for sentiment analysis with the greatest accuracy of 80.37% in the signal aspect and 80.12% in the service aspect, and the expansion feature is proven to be able to increase the performance value of this study by 13.15% in the signal aspect. and 5.37% in the service aspect.
Publisher
Institute of Research and Community Services Diponegoro University (LPPM UNDIP)