A Compatibility in the Single Cell of the NiO/LSGM/LSCF

Author:

Noviyanti Atiek Rostika1ORCID,Agesti Claudia1,Deawati Yusi1,Syarif Dani Gustaman2

Affiliation:

1. Chemistry Department, Faculty of Mathematics and Science, Universitas Padjadjaran Bandung

2. National Nuclear Energy Agency Indonesia (PSTNT)-BATAN Bandung

Abstract

The compatibility between anode, electrolyte, and cathode in a solid fuel cell determines its performance. Research on the compatibility between fuel cell components is challenging, especially for SOFCs that operate at high temperatures. Therefore, efforts to reduce the operating temperature to become intermediate temperature SOFC (IT-SOFC) are essential to facilitate compatibility between its components. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has been recognized as one of the most promising cathode materials for (IT-SOFC) due to its high electronic conductivity and excellent electrical performance. While La0.8Sr0.2Ga0.8Mg0.2O3–δ (LSGM) has a high oxygen ion conductivity at low temperatures, its chemical stability is still not good. LSGM is known to have interface reactivity with other components such as NiO and LSCF in fuel cells. This study looked at the compatibility of NiO/LSGM/LSCF cells prepared by the solid chemical synthesis method. Compatibility evaluation is determined by the Thermal Expansion Coefficient (TEC) parameter using the dilatometric method, Area Specific Resistance (ASR), and TBF area morphology by Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS). While the conductivity of the cells is determined by Electrochemical Impedance Spectroscopy (EIS). NiO/LSGM/LSCF cells have good compatibility with a value of 78.05 kg-1.K.A.s3.µ2 at a temperature of 600°C. The ASR values of cells tend to decrease with increasing temperature and conductivity values at small TEC values. Based on these parameter values, delamination in NiO/LSGM/LSCF cells did not occur.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3