Facile Synthesis of ZnO Nanoparticles for the Photodegradation of Rhodamine-B

Author:

Sudiarti Tety1,Handayani Neng Hani1,Rohmatulloh Yusuf1ORCID,Amelia Silmi Rahma1,Yusuf Ravli Maulana1,Ivansyah Atthar Luqman2ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia

2. Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung,, Indonesia

Abstract

River pollution is a problem that is still very poorly handled. Industrial growth is the most significant contributor to produce this wastewater. The industry produces liquid waste such as dyes that do not meet handling standards because of the high cost. Photocatalyst is way better than other methods such as adsorption, coagulation, fluctuation, and others. However, there are still many shortcomings of the existing methods, such as high cost, high temperature, and dangerous by-products. This research seeks to provide a solution by synthesizing zinc oxide (ZnO) nanoparticles as a photocatalyst to reduce rhodamine B dye under visible light irradiation. ZnO nanoparticles were successfully synthesized through a simple sol-gel method in the form of a white powder by heating at a low temperature, 60°C. The XRD results show that the results have a diffraction peak that follows the standard ZnO with a hexagonal wurtzite crystal structure. According to the Scherrer equation, the crystal has a size of 22.61 nm. SEM analysis showed that the particle morphology and particle size were homogeneous with a spherical shape, ranging from 22-24 nm. Optimal ZnO photocatalytic activity at 90 minutes with an efficiency of 98.83%.

Funder

UIN Sunan Gunung Djati

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3