Molecular Cloning and Expression of Haloacid Dehalogenase Gene from a Local Pseudomonas aeruginosa ITB1 Strain and Tertiary Structure Prediction of the Produced Enzyme

Author:

Ratnaningsih Enny1ORCID,Utami Lousiana Dwinta1,Nurlaida Nurlaida1,Putri Rindia Maharani1ORCID

Affiliation:

1. Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

Abstract

Organohalogens are widely utilized as pesticides, herbicides, solvents, and for many other industrial purposes. However, the use of these compounds caused some negative impacts to the environment due to their toxicity and persistency. In the light of this, some microbes have been identified and employed to perform dehalogenation, converting halogenated organic compounds to non-toxic materials. In this research, we successfully cloned and sequenced the haloacid dehalogenase gene from a local Pseudomonas aeruginosa ITB1 strain, which is involved in the degradation of monochloroacetate. First, the haloacid dehalogenase gene was amplified by PCR using a pair of primers designed from the same gene sequences of other P. aeruginosa strains available in the GenBank. The cloned gene in pGEM-T in E. coli TOP10 was sequenced, analyzed, and then sub-cloned into pET-30a(+) for expression in E. coli BL21 (DE3). To facilitate direct sub-cloning, restriction sequences of EcoRI (G/AATTC) and HindIII (A/AGCTT) were added to the forward and reversed primers, respectively. The expressed protein in E. coli BL21 (DE3) appeared as a 26-kDa protein in SDS-PAGE analysis, which is in good agreement with the size predicted by ExPASy Protparam. We obtained that the best expression in LB liquid medium was achieved with 0.01 mM IPTG induction at 30°C incubation for 3 hours. We also found that the enzyme is more concentrated in the pellet cells as inclusion bodies. Furthermore, the in-silico analysis revealed that this enzyme consists of 233 amino acid residues. This enzyme’s predicted tertiary structure shows six β-sheets flanked by α-helixes and thus belongs to Group II haloacid dehalogenase. Based on the structural prediction, amino acid residues of Asp7, Ser121, and Asn122 are present in the active site and might play essential roles in catalysis. The presented study laid the foundation for recombinant haloacid dehalogenase production from P. aeruginosa local strains. It provided an insight into the utilization of recombinant local strains to remediate environmental problems caused by organohalogens.

Funder

Institut Teknologi Bandung

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3