Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst

Author:

Aziz Isalmi1,Ardine Edra Aditya Fhilipia1,Saridewi Nanda2,Adhani Lisa3

Affiliation:

1. Department of Chemistry, Faculty of Sciences and Technology, Syarif Hidayatullah State Islamic University, South Tangerang, Indonesia

2. Department of Chemistry Education, Faculty of Education and Teacher Training, Syarif Hidayatullah State Islamic University, South Tangerang, Indonesia

3. Department of Chemical Engineering, Faculty of Engineering, Universitas Bhayangkara Jakarta Raya, South Jakarta, Indonesia

Abstract

Crude biodiesel is biodiesel that still contains impurities. A catalytic can improve the quality of biohydrocarbons (biogasoline, biokerosene, and green diesel). The catalyst used is nickel oxide impregnated natural zeolite (NiO/Zeolite). The use of nickel can increase the activity of the catalyst because it has an empty d orbital and a smaller molecular size. This study aims to determine the best catalyst that can exhibit the greatest selectivity toward biohydrocarbons. Natural zeolite was activated and impregnated by varying the concentration of NiO (1, 3, and 5% w/w). The characteristics of the catalyst were determined by the crystallinity (X-Ray Diffraction), surface area (Surface Area Analyzer), and functional group (Fourier Transform Infrared). The catalyst and crude biodiesel were put in an autoclave reactor and operated at a temperature of 375°C and 3 hours. The obtained product was tested with Gas Chromatography-Mass Spectroscopy. The results of the XRD analysis showed the presence of NiO at 2θ 37.23; 43.15; and 62.65°. Nickel oxide on the catalyst was detected at a wavenumber of 671.23 cm‑1. The highest surface area was obtained at a NiO/Zeolite 1% of 49.4 m2/g. 1% NiO/Zeolite catalysts gave the best results on catalytic cracking of crude biodiesel with a reaction conversion of 60.79% and selectivity of 9,73%; 29,64% and 9,18% for biogasoline, biokerosene, and green diesel, respectively.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3