Rice Husk Demineralization: Effect of Washing Solution on Its Physicochemical Structure and Thermal Degradation

Author:

Wijayanti Hesti1,Nata Iryanti Fatyasari1ORCID,Irawan Chairul1ORCID,Jelita Rinny1

Affiliation:

1. Department of Chemical Engineering, Lambung Mangkurat University

Abstract

Generally, biomass consists of various amounts of minerals. These minerals influence the biomass characteristics and behavior during their use in a thermochemical process such as pyrolysis. The conversion during pyrolysis and its final product will be affected. This research was carried out to study the impact of washing treatment in water and acid solutions on the rice husk as the raw material for pyrolysis. Also, the effect of acid strength (citric acid as the weak acid while nitric acid as the strong acid) and its concentration (1, 5, and 10 wt.%) was investigated. The results confirmed from the thermogravimetry (TGA/DTG) analysis, surface analysis (SEM), and spectra (FTIR) analysis describe the treatment using water caused less change on the rice husk surface structure and its thermal degradation. However, it seems hard to reduce the minerals (proved from XRF analysis). Meanwhile, the treatment using acids solution resulted in lower mineral composition than the rice husk without treatment. This result is more visible for demineralization using a 5 wt.% nitric acid solution. However, for a higher concentration (washing treatment using 10 wt.% solutions of nitric acid), the degradation on rice husk structure was more occurred.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3