Simulated annealing in feature selection approach for modeling aboveground carbon stock at the transition between Brazilian Savanna and Atlantic Forest biomes

Author:

Araújo Laís Almeida,Leite e Lopes Isáira,Oliveira Rafael Menali,Silva Sérgio Henrique Godinho,Jarochinski e Silva Carolina Souza,Gomide Lucas Rezende

Abstract

Forest ecosystems are important in the carbon storage process. Thus, the objective was to investigate the effectiveness of the Simulated Annealing meta-heuristic analysis for selecting variables to maximize the accuracy of the aboveground carbon prediction at the tree level. We used data from uneven-aged forests located in the Rio Grande Basin - Minas Gerais, Brazil, where 227 trees had their carbon stock measured. The classic Spurr linear model, stepwise linear regression and pan-tropical coverage, Random Forest (RF), and the hybrid SARF method (Simulated Annealing and Random Forest) were used to estimate the carbon stock from the selection of variables for the different compartments of the tree (total, stem, branch, and leaf). The SARF consisted of the metaheuristic to select the variables to be used in the RF. These methods were evaluated by the root mean square error (RMSE), coefficient of determination (R²), and residual graph. As a result, the pan-tropical equation demonstrated superior performance than the Spurr model due to its greater homogeneity of residues. The stepwise technique reduced the number of variables and the error of the estimates, mainly for the validation set. SARF showed better adjustments than RF, as it reduced in on average 99.2% of the number of variables and 9% of the error of estimates considering all compartments. In general, variables such as volume, basic wood density, canopy projection area, diameter at 0%, diameter at breast height, height, and latitude contributed strongly to the carbon independent of the tree compartment. Among the methods, SARF is an alternative to the traditional method, as it can extract accurate information from a large data set.

Publisher

Marin Dracea National Research-Development Institute in Forestry

Subject

Plant Science,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3