Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba (Mill.) in central Apennines

Author:

Ducci Fulvio,De Rogatis Anna,Proietti Roberta,Curtu Alexandru Lucian,Marchi Maurizio,Belletti Piero

Abstract

Understanding tree species responses to climate change is crucial for preserving biodiversity especially in Southern Europe hot spots where Abies alba is widely spread. Three Apennine silver fir populations, Pigelleto (PIG), La Verna (LV) and Bocca Trabaria (BT), ensured gene flows in interglacial periods between the two phylogenetically different groups of northern and southern Apennines. These stands were analysed (nuclear and chloroplast SSRs) with the aim to establish a baseline for their future management in view of the expected changes. The three forests were tested for the Centre-Periphery Hypothesis (CPH) compared to forty-five Italian populations. At the same time, permanent areas were surveyed within LV and PIG on dominant (a) and dominated or natural regeneration (r) tree layers, and on age classes. In two consecutive years, spring cambial phenology activity was also weekly monitored on microcores, and critical phenology dates recorded. The stands matched CPH only partially, showing different phylogenetic history and their bridging between northern and southern groups of silver fir populations was confirmed. LV was distinct from PIG and BT. The within-population variance component was significantly high, and no narrow relatedness was observed between dominant and dominated/regeneration spatially closer trees, and genetic parameters were comparable in both layers at LV and PIG. In both stands, older age classes ensured natural regeneration. Cambium phenology was highly variable within populations, consistently to other Mediterranean conifers, and highly sensitive to local and year’s conditions and monitoring will improve population’s adaptive capacity detection. Shelterwood-system silvicultural treatments are suggested on small areas to drive the demographic and panmictic balance towards an uneven-aged more resilient structure, and iterated monitoring will help to adapt the forest management to the isotherm shift.

Publisher

Marin Dracea National Research-Development Institute in Forestry

Subject

Plant Science,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3